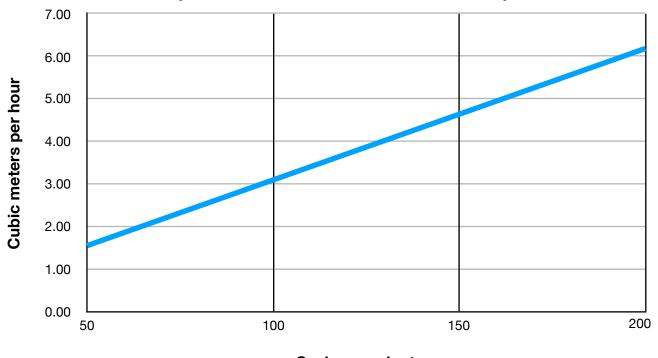


Dry Gas Seal Pressure Boosters

EMB Series - 160 bar

HIGHLY ENGINEERED SOLUTIONS

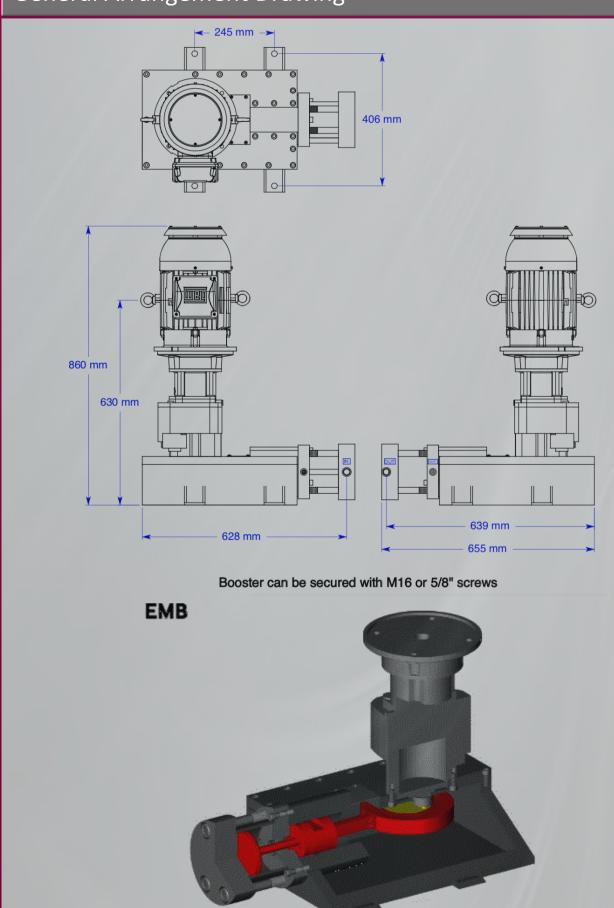


Model Specifications

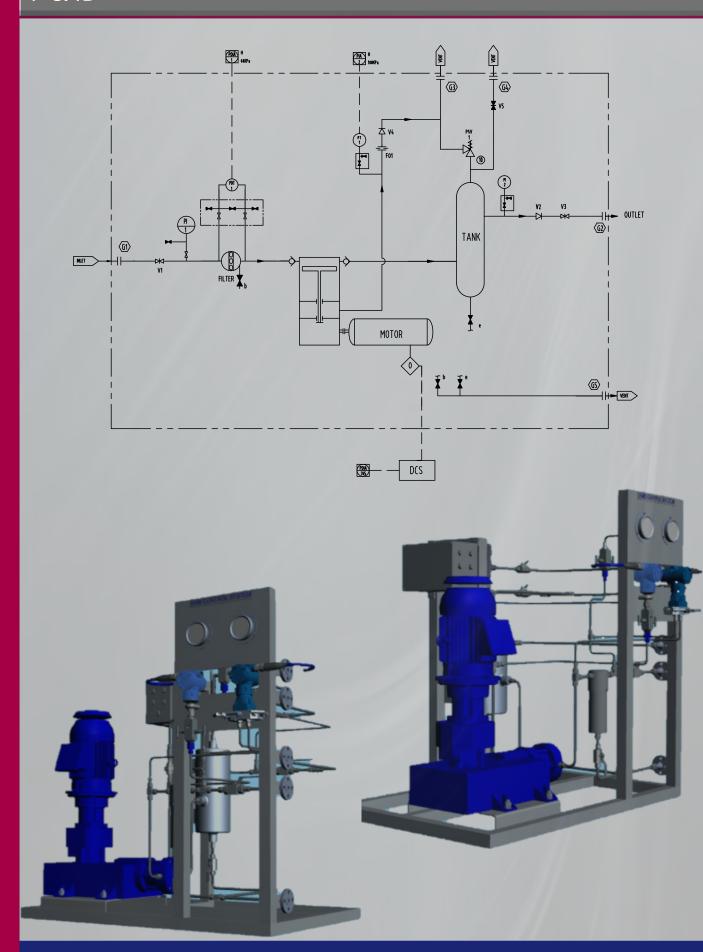
Designed in accordance with the ASME Boiler and Pressure Vessel Code Section VIII, Div. 1 (not stamped). The gas wetted components comply with NACE MR0175/ISO15156-2 and MR0103-2010. The motor hazardous area specification is NEMA Class I, Div. 2, Groups C & D.

Maximum Gas Discharge Pressure	16 MPa	
Maximum Gas Discharge Temperature	200 °C	
Maximum Pressure Boost 300 KPa		
Variable Speed Motor Maximum Power	4 kw	
Motor Voltage / Frequency 380V / 50H		
Booster Cycle Rate	75-194 cpm	
Maximum gas displacement flowrate 6 m3/hr		
Weight ~111 kg		
Inlet/Discharge Ports	1/2 NPT	
Gas Wetted Booster Components	316L SS	

Displacement Flowrate in cubic meters per hour

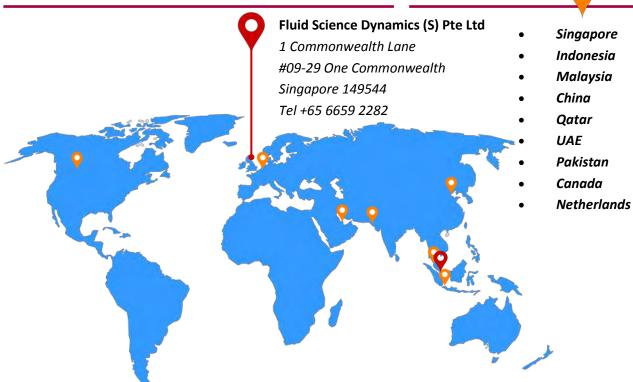


General Arrangement Drawing


Booster Comparison Table

	ЕМВ	CENTRIFUGAL REGENERATIVE TURBINE	Air-Driven Booster
Minimum Cost	Х	2.5 X	0.5 X
Drive	Electric motor	Electric motor	Pneumatic cylinder
Pressure booster	Reciprocating piston	Regenerative turbine	Reciprocating piston
Displacement flow	Unaffected by supply pressure	Inadequate at low supply pressure	Unaffected by supply pressure
High pressure design	Simple and economical	Difficult and expensive	Simple and economical
Flowrate control	Simple	Simple	Difficult
Energy Efficiency	Above 90%	Below 20%	Below 30%
24/7 operation	Yes	Yes	Yes
Typical boost pressure	Low but adequate	Low but adequate	High if desired
Gas temperature increase	Negligible	Substantial	Negligible
Instrument air requirement	No	No	Yes
Lubrication requirement	No	No	No
Maintenance interval	5,000-9000 hours	17,000 hours	4,000-6000 hours
Field repairable	Yes	No	Yes
Difficulty of repair	Low	High	Medium
Cost of repair	Low	Very high	Low
Rod seal leakage	< 20 ml/min	None	< 50 ml/min
Weight	Medium	High	Low
Size	Large	Large	Small
Noise	Low	Low	High

P&ID



LOCATIONS

Main Contact

Representation

Fluid Science Dynamics (S) Pte Ltd 1 Commonwealth Lane #09-29 One Commonwealth Singapore 149544 Tel +65 6659 2282

Phone: +65 9824 8889

Email: lauwei@fluidscdynamics.com

PT. Fluid Science Dynamics Indonesia Berlian 88 Biz Estate, Block C No. 12 Kel. Bojong Nangka, Kec. Kelapa Dua, Tangerang 15820, Banten, INDONESIA

Phone: +62 811825718

Email:rudiyanto.wijaya@fluidscdynamics.com

NEBOT Fluid Science Dynamics (Tianjin) Co., Ltd Tianjin Xiqing Xuefu Industrial Park, Huishen road No.7, Unit No J5,

Factory A102, Tianjin City, China. Phone: +86-22-887 18208

Email: wanghaining@tjnebot.com

Fluid Science Dynamics (M) Sdn Bhd No.13, Lorong Sungai Puloh, 1A/KU6 Taman Teknologi gemilang, Kawasan Perindustrian Sungai Puloh, 42100 Klang, Selangor, Malaysia

Phone : +603 3345 1188

Email: lauwei@fluidscdynamics.com